
Dot product and Pythagorean Theorem

by Deborah R. Fowler



Suppose you have three points. Problem – we know the rotation point and the moving 
point, but we  need to know the constraint point

Rotation point of object

Moving point controlling the object rotation

Point constraint since the 
r and R are constant (rigid)

D

R

2/25/2018 2Deborah R Fowler

r



D changes, but we can compute it … we would like to know the angle 
of rotation of the objects of r and R

Point constraint since the 
r and R are constant (rigid)

D

R

2/25/2018 3Deborah R Fowler

Rotation point of object

r



D

R

2/25/2018 4Deborah R Fowler

What we really want to find is how much the green and the (purple) rods rotate around 
their pivot points

r



D

2/25/2018 5Deborah R Fowler

reference x-axis

reference x-axis

angleT

angleS

By definition, dot product of two vectors = cos (angle) * product of the 
length of the two vectors. We will use this property to calculate angleS and 

angleT,  but before we do this, what else do we know?



D

2/25/2018 6Deborah R Fowler

reference x-axis

angleT

If we can find angleT and angleS that’s a start …

reference x-axis

angleS



D

2/25/2018 7Deborah R Fowler

reference x-axis
angleT

reference x-axisangleS

… but what we really want is angleT-angleE and angleS-angleG

angleE

angleG



D

2/25/2018 8Deborah R Fowler

reference x-axis
angleT

reference x-axisangleS

angleE

angleG

Pythagorean theorem can help us find angleG and angleE



D

2/25/2018 9Deborah R Fowler

angleE

angleG

But didn’t Pythagorean only apply to right angled triangles?



D

2/25/2018 10Deborah R Fowler

So let’s break it down … drop down a perpendicular line



D

2/25/2018 11Deborah R Fowler

From Pythagorean’s theorem we know for right triangles that the 
sum of the two sides, each squared, equals the hypotenuse squared

R

r



D-d

2/25/2018 12Deborah R Fowler

R

r

d



2/25/2018 13Deborah R Fowler

red2 + d2 = R2 and    red2 + (D-d)2 =r2

R

d

D-d r



D-d

2/25/2018 14Deborah R Fowler

red2 + d2 – d2= R2 - d2 and    red2 + (D-d)2 - (D-d)2 = r2  - (D-d)2

red2 = R2 - d2 and    red2 = r2  - (D-d)2

R

r

d



D-d

2/25/2018 15Deborah R Fowler

red2 + d2 – d2= R2 - d2 and    red2 + (D-d)2 - (D-d)2 = r2  - (D-d)2

red2 = R2 - d2 and    red2 = r2  - (D-d)2

R

r

d

Equating the two: 
red2 = R2 - d2 and red2 = r2 - (D-d)2

R2 - d2 = r2 - (D-d)2 

Rewritten:
R2 - d2 - r2 + (D-d)2 = 0
R2 - d2 - r2 + D2 – 2Dd + d2 = 0

Solving for d: 
R2 - d2 - r2 + D2 – 2Dd + d2 = 0
R2 - r2 + D2 = 2Dd
d = ( R2 - r2 + D2 ) / 2D

So what does this give us?



D-d

2/25/2018 16Deborah R Fowler

d = ( R2 - r2 + D2 ) / 2D   and we know r, R
We can calculate D since we know the points at any given moment

R

r

d



D-d

2/25/2018 17Deborah R Fowler

R

r

d

By the definition of cosine, we can find angleE and angleG. 

Recall the definition of cosine  
cos = adjacent/hypothenus

cos(angleE) = d / R
cos(angleG) = (D-d)/r

Thus taking the inverse cosine
angleE = cos-1  (d/R)
angleG = cos-1  ((D-d)/r)

cos-1  is also called inverse cosine 
or the arc cosine and is available 
as acos in many packages

angleE

angleG



D-d

2/25/2018 18Deborah R Fowler

R

r

d
angleE

angleG

So we have a way to compute angleE and angleG. We said we could 
compute angleS and angle T from the dot product. Let’s do that now:

angleT (whole angle)

angleS (whole angle)

The dot product is defined to be:

A · B = |A| * |B| * cos(angle) 
If the vectors are normalized, then it is simply
normalizedA · normalizedB = cos(angle)
(ie. |A| and |B| are one)

Given A is (Ax,Ay) and B is (Bx,By)
A · B = Ax * Bx + Ay * By

So how do we get the vector D?
A great explanation on dot product can 
be found at 
http://www.mathsisfun.com/algebra/ve
ctors-dot-product.html



Vectors – given two points in space, the vector
in the diagram is defined by (x1-x0, y1-y0)

(x1, y1)

(x0,y0)

v

2/25/2018 19Deborah R Fowler



Vectors: Recall how to compute the length of a vector and how to normalize a vector

(x1, y1)

(x0,y0)

v

Given a vector v
The length of a vector is
sqrt( (x1-x0)2 + (y1-y0)2 )

This is the length from 
pythagorean’s theorem

To normalize a vector, we divide it 
by the length of the vector

2/25/2018 20Deborah R Fowler



D-d

2/25/2018 21Deborah R Fowler

r

d
angleE

angleG

angleT (whole angle)

angleS (whole angle)

What about our case?

Recall that if A is (Ax,Ay) and B is (Bx,By)
normalizedA · normalizedB = cos(angle)
and
A · B = Ax * Bx + Ay * By

Well, one of our vectors is the reference x-axis, the 
other vecD is represented by (x1,x0, y1,y0) 
therefore the dot product is:

(1,0) · ( x1-x0, y1-y0 )
1 * x1-x0 + 0 * y1-y0
Which is x1-x0. If we normalize this we end up with  
cos(angleT) = x1-x0 / (length of vecD) 
angleT = acos((x1-x0)/ sqrt( (x1-x0) 2 + (y1-y0)2 )
angleS = 180 - angleT

R

(x0,y0)

(x1, y1)



D-d

2/25/2018 22Deborah R Fowler

R

r

d
angleE

angleG

angleT (whole angle)

angleS (whole angle)

So we are almost done:

angleT = acos((x1-x0)/ sqrt( (x1-x0) 2 + (y1-y0)2 )  
angleS = 180 – angleT

angleE = acos (d/R)
angleG = acos ((D-d)/r)

d = ( R2 - r2 + D2 ) / 2D

We already know r and R
D = sqrt( (x1-x0) 2 + (y1-y0)2 ) 

So we have all the information we need to 
Give us the rotations which are 
angleT – angleE   for our purple object
angleG – angleS for our green object ie. –(angleS-angleG)

(x0,y0)

(x1, y1)



In the sample file, hscript looks like this:

Using multi-line expressions, we have for the rotate on z variable of the purple object 

{
#  Expression calculating the angle of rotation, from the diagrams this is angleT - angleE
#  D is the distance between the two centers of the circles
#  D = ( R squared - r squared + D squared)/ 2D where D is the distance between the points 
#  for the moment lets assume the x1, y1 is at the origin
#
R = .4;
r = .3;
x1 = 0;
y1 = 0;
x0 = point("../xformRotatingWheel",40,"P",0);
y0 = point("../xformRotatingWheel",40,"P",1);
D = sqrt(pow(x1-x0,2) + pow(y1-y0,2));
d = (R*R - r*r + D*D)/(2.0*D);
angleE = acos(d/R);

# next compute angleT
angleT = acos( ( x1 - x0 )/D);
angleRot = angleT - angleE;
return angleRot;
}

2/25/2018 23Deborah R Fowler



In the sample file, hscript looks like this:
Using multi-line expressions, we have for the rotate on z variable of the green object 

{
#  Expression calculating the angle of rotation, from the diagrams this is angleS - angleG
#  D is the distance between the two centers of the circles
#  D = ( R squared - r squared + D squared)/ 2D where D is the distance between the points 
#  for the moment lets assume the x1, y1 is at the origin, but the equations are still valid if you adjust this
#
R = .4;
r = .3;
x1 = 0;
y1 = 0;
x0 = point("../xformRotatingWheel",40,"P",0);
y0 = point("../xformRotatingWheel",40,"P",1);
D = sqrt(pow(x1-x0,2) + pow(y1-y0,2));
d = (R*R - r*r + D*D)/(2.0*D);
angleG = acos((D-d)/r);

# next compute angleT
angleT = acos( ( x1 - x0 )/D);
angleS = 180 - angleT;

angleRot = angleS - angleG;
return -angleRot;
}

2/25/2018 24Deborah R Fowler



in the sample file, dotPythagoreanInAction.hipnc

- see the red nodes for the equations
- the yellow node is where the rotation of the point (such as a 

gear that will drive the animation) is located
- note that the x-axis is the reference axis

2/25/2018 25Deborah R Fowler



in the sample file, dotPythagoreanInAction.hipnc

2/25/2018 26Deborah R Fowler

r

R



2/25/2018 Deborah R Fowler 27

Or even better … wrangle node code!



2/25/2018 Deborah R Fowler 28

To access detail attributes in transforms

detail(path,attribute,which)


	�Dot product and Pythagorean Theorem���by Deborah R. Fowler
	Suppose you have three points. Problem –  we know the rotation point and the moving point, but we  need to know the constraint point
	Slide Number 3
	What we really want to find is how much the green and the (purple) rods rotate around their pivot points
	By definition, dot product of two vectors = cos (angle) * product of the length of the two vectors. We will use this property to calculate angleS and angleT,  but before we do this, what else do we know?� 
	Slide Number 6
	Slide Number 7
	Slide Number 8
	Slide Number 9
	Slide Number 10
	From Pythagorean’s theorem we know for right triangles that the sum of the two sides, each squared, equals the hypotenuse squared�� 
	Slide Number 12
	red2  + d2 = R2    and    red2  + (D-d)2 =r2�� 
	red2  + d2 – d2= R2 - d2   and    red2  + (D-d)2 - (D-d)2 = r2   - (D-d)2 �red2 = R2 - d2                   and    red2 = r2   - (D-d)2 � 
	red2  + d2 – d2= R2 - d2   and    red2  + (D-d)2 - (D-d)2 = r2   - (D-d)2 �red2 = R2 - d2                   and    red2 = r2   - (D-d)2 � 
	d = ( R2  - r2  + D2 ) / 2D   and we know r, R�We can calculate D since we know the points at any given moment�� 
	Slide Number 17
	So we have a way to compute angleE and angleG. We said we could compute angleS and angle T from the dot product. Let’s do that now:� 
	Vectors – given two points in space, the vector�in the diagram is defined by (x1-x0, y1-y0)
	Vectors: Recall how to compute the length of a vector and how to normalize a vector
	What about our case?� 
	Slide Number 22
	In the sample file, hscript looks like this:
	In the sample file, hscript looks like this:
	in the sample file, dotPythagoreanInAction.hipnc
	in the sample file, dotPythagoreanInAction.hipnc
	Slide Number 27
	Slide Number 28

