Dot product and pythagorean
Theorem

by Deborah R. Fowler

Suppose you have three points. Problem — we know the rotation point
and the moving point, but we need to know the constraint point

Rotation point of object

Point constraint since the
r and R are constant (rigid)

Moving point controling the object rotation

D changes, but we can compute it ... we would like to know the angle

of rotation of the objects of r and R length
11/17/2013 Deborah R Fowler 2

What we really want to find is how much the green(leg) and the
(purple) rod rotate around their pivot points

Rotation point of object

Point constraint since the
r and R are constant (rigid)

Moving point controling the object rotation

D changes, but we can compute it ... we would like to know the angle

of rotation of the objects of r and R length
11/17/2013 Deborah R Fowler

By definition, dot product of two vectors = cos (angle) * product of the
length of the two vectors. We will use this property to calculate angleS
and angleT, but before we do this, what else do we know?

reference x-axis

reference x-axis

11/17/2013 Deborah R Fowler 4

If we can find angleT and angleS that’s a start, but what we really
want is angleT-angleE and angleS-angleG

reference x-axis
angleS (whole angle)

angleT (whole angle)

reference x-axis

We can find angleE and angleG given the Pythagorean theorem
That is, given a right-sided triangle, the sum of the two sides
each squared is equal to the hypotenuse squared (a?+b?=c?)

11/17/2013 Deborah R Fowler 5

From Pythagorean’s theorem we know for right triangles that the two

sides, each squared, equal to the hypotenuse.
red? + d? = R? and red? + (D-d)? =r?

Equating the two:
red?=R? -dZand red? =r? -
-d? =r? - (D-d)?

Rewritten:
-d? -r2+(D-d)2=0

-d? -r2 +D?-2Dd+d%?=0

Solving for d:

-g? -r2 +D?-2Dd+d?=0

R2 - r2 + D2 = 2Dd
d=(R?-r2+D?)/2D

So what does this give us?

11/17/2013

angleS (whole angle)

angleT (whole angle)

Deborah R Fowler 6

We can calculate length D at any given moment since we know the
point information. We also know r and R’s length — they are given.
By the definiton of cosine, we can find angleE and angleG.

So what do we have so far?
d=(R?2-r2+D?)/2D

angleS (whole angle)

Recall the definition of cosine
cos = adjacent/hypothenus

cos(angleE) =d /R
cos(angleG) = (D-d)/r

Thus taking the inverse cosine
angleE = cos? (d/R)
angleG = cos? ((D-d)/r)

angleT (whole angle)

cos! is also called inverse cosine or the
arc cosine and is available as acos in
many packages

11/17/2013 Deborah R Fowler 7

So we have a way to compute angleE and angleG. We said we could
compute angleS and angle T from the dot product. Let’s do that now:

angleS (whole angle)
The dot product is defined to be:

A-B=|A| * |B| * cos(angle)

If the vectors are normalized, then it is simply
normalizedA - normalizedB = cos(angle)

(ie. |A| and |B| are one)

Given Ais (Ax,Ay) and B is (Bx,By)

. —_ * *
A-B=Ax*Bx+Ay * By angleT (whole angle)

So how do we get the vector D?

A great explanation on dot product can
be found at
http://www.mathsisfun.com/algebra/ve
ctors-dot-product.html

11/17/2013 Deborah R Fowler 8

Vectors — given two points in space, the vector
in the diagram is defined by (x1-x0, y1-y0)

(x1,y1)

11/17/2013 Deborah R Fowler

Vectors: Recall how to compute the length of a vector and how
to normalize a vector

11/17/2013

(x1,y1)

Deborah R Fowler

Given a vector v
The length of a vector is
sqrt((x1-x0)2 + (y1-y0)?)

This is the length from
pythagorean’s theorem

To normalize a vector, we divide it
by the length of the vector

10

What about our case?

(x1,y1)

angleS (whole angle)

Recall that if A is (Ax,Ay) and B is (Bx,By)
normalizedA - normalizedB = cos(angle)

and
A-B=Ax*Bx+Ay * By

Well, one of our vectors is the reference x-axis, the
other vecD is represented by (x1,x0, y1,y0)
therefore the dot product is:

angleT (whole angle)

(1,0) - (x1-x0, y1-y0)
1* x1-x0+0 *yl-y0 (x0,y0)
Which is x1-x0. If we normalize this we end up with
cos(angleT) = x1-x0 / (length of vecD)

angleT = acos((x1-x0)/ sqrt((x1-x0) 2 + (y1-y0)?)

angleS = 180 - angleT

11/17/2013 Deborah R Fowler 11

So we are almost done:

angleT = acos((x1-x0)/ sqrt((x1-x0) 2 + (y1-y0)?) (x1,y1)

angleS = 180 — angleT angleS (whole angle)

angleE = acos (d/R)
angleG = acos ((D-d)/r)

d=(R%2-r2+D?)/2D

We already know r and R
D = sqrt((x1-x0) % + (y1-y0)?)

So we have all the information we need to
Give us the rotations which are | (x0,y0)
angleT —angleE for our purple object

angleG — angleS for our green object ie. —(angleS-angleG)

angleT (whole angle)

If you want to see a real application of this, check out the
sample file.

11/17/2013 Deborah R Fowler 12

In the sample file, hscript looks like this:

Using multi-line expressions, we have for the rotate on z variable of the purple object

{

Expression calculating the angle of rotation, from the diagrams this is angleT - angleE

D is the distance between the two centers of the circles

D =(Rsquared - rsquared + D squared)/ 2D where D is the distance between the points
for the moment lets assume the x1, y1 is at the origin

#
R=.4

r=.3;

x1=0;

yl=0;

x0 = point("../xformRotatingWheel",40,"P",0);
y0 = point("../xformRotatingWheel",40,"P",1);
D = sqrt(pow(x1-x0,2) + pow(y1-y0,2));

d = (R*R - r*r + D*D)/(2.0*D);

angleE = acos(d/R);

next compute angleT
angleT = acos((x1 - x0)/D);
angleRot = angleT - angleE;
return angleRot;

}

11/17/2013 Deborah R Fowler

In the sample file, hscript looks like this:

Using multi-line expressions, we have for the rotate on z variable of the green object

{

Expression calculating the angle of rotation, from the diagrams this is angleS - angleG

D is the distance between the two centers of the circles

D =(Rsquared - rsquared + D squared)/ 2D where D is the distance between the points

for the moment lets assume the x1, y1 is at the origin, but the equations are still valid if you adjust this

yl=0;

x0 = point("../xformRotatingWheel",40,"P",0);
y0 = point("../xformRotatingWheel",40,"P",1);
D = sqrt(pow(x1-x0,2) + pow(y1-y0,2));

d = (R*R - r*r + D*D)/(2.0*D);

angleG = acos((D-d)/r);

next compute angleT
angleT = acos((x1 - x0)/D);
angleS = 180 - angleT;

angleRot = angleS - angleG;
return -angleRot;

}
11/17/2013 Deborah R Fowler

in the sample file,
dotPythagoreanlnAction.hipnc

see the red nodes for the equations

the yellow node is where the rotation of the
point (such as a gear that will drive the
animation) is located

note that the x-axis is the reference axis

11/17/2013

in the sample file,
dotPythagoreaninAction.hipnc

®

Deborah R Fowler

16

