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Suppose you have three points. Problem –  we know the rotation point 
and the moving point, but we  need to know the constraint point 

Rotation point of object 

Moving point controling the object rotation 
 
D changes, but we can compute it … we would like to know the angle 
of rotation of the objects of r and R length 

Point constraint since the  
r and R are constant (rigid) 
 

D 

r 

R 
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What we really want to find is how much the green(leg) and the 
(purple) rod rotate around their pivot points 

Rotation point of object 

Moving point controling the object rotation 
 
D changes, but we can compute it … we would like to know the angle 
of rotation of the objects of r and R length 

Point constraint since the  
r and R are constant (rigid) 
 

D 

r 

R 
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By definition, dot product of two vectors = cos (angle) * product of the 
length of the two vectors. We will use this property to calculate angleS 

and angleT,  but before we do this, what else do we know? 
  

reference x-axis 

reference x-axis 

angleT 

angleS 
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If we can find angleT and angleS that’s a start, but what we really 
want is angleT-angleE and angleS-angleG  

  

reference x-axis 

reference x-axis 

angleE 

angleG 

angleT (whole angle) 

angleS (whole angle) 

We can find angleE and angleG given the Pythagorean theorem 
That is, given a right-sided triangle, the sum of the two sides  
each squared is equal to the hypotenuse squared (a2+b2=c2) 
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From Pythagorean’s theorem we know for right triangles that the two 
sides, each squared, equal to the hypotenuse. 

 red2  + d2 = R2 and red2  + (D-d)2 =r2 
  

D 

r 

angleE 

angleG 

angleT (whole angle) 

angleS (whole angle) 

R 

d 

Equating the two:  
red2 = R2  - d2 and red2  = r2  - (D-d)2 

R2  - d2  = r2  - (D-d)2    
 
Rewritten: 

R2  - d2  - r2 + (D-d)2 = 0 
R2  - d2  - r2  + D2 – 2Dd + d2 = 0 
 
Solving for d:  
R2  - d2  - r2  + D2 – 2Dd + d2 = 0 
R2  - r2  + D2 = 2Dd 
d = ( R2  - r2  + D2 ) / 2D 
 
So what does this give us? 
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We can calculate length D at any given moment since we know the 
point information. We also know r and R’s length – they are given. 

By the definiton of cosine, we can find angleE and angleG.  
  

D 

r 

angleE 

angleG 

angleT (whole angle) 

angleS (whole angle) 

R 

d 

 
So what do we have so far? 
d = ( R2  - r2  + D2 ) / 2D 
 
Recall the definition of cosine   
cos = adjacent/hypothenus 
 
cos(angleE) = d / R 
cos(angleG) = (D-d)/r 
 
Thus taking the inverse cosine 
angleE = cos-1   (d/R) 
angleG = cos-1   ((D-d)/r) 
 
cos-1   is also called inverse cosine or the 
arc cosine and is available as acos in 
many packages 
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So we have a way to compute angleE and angleG. We said we could 
compute angleS and angle T from the dot product. Let’s do that now: 

  

D 

r 

angleE 

angleG 

angleT (whole angle) 

angleS (whole angle) 

R 

d 

 
The dot product is defined to be: 
 
A · B = |A| * |B| * cos(angle)  
If the vectors are normalized, then it is simply 
normalizedA · normalizedB = cos(angle) 
(ie. |A| and |B| are one) 
 
Given A is (Ax,Ay) and B is (Bx,By) 
A · B = Ax * Bx + Ay * By 
 
So how do we get the vector D? 
 
 
 
 
 
 
 

A great explanation on dot product can 
be found at  
http://www.mathsisfun.com/algebra/ve
ctors-dot-product.html 
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Vectors – given two points in space, the vector 
in the diagram is defined by (x1-x0, y1-y0) 

(x1, y1) 

(x0,y0) 

v 
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Vectors: Recall how to compute the length of a vector and how 
to normalize a vector 

(x1, y1) 

(x0,y0) 

v 

Given a vector v 
The length of a vector is 
sqrt( (x1-x0)2 + (y1-y0)2 ) 
 
This is the length from 
pythagorean’s theorem 
 
To normalize a vector, we divide it 
by the length of the vector 

11/17/2013 10 Deborah R Fowler 



What about our case? 
  

D 

r 

angleE 

angleG 

angleT (whole angle) 

angleS (whole angle) 

R 

d 

 
Recall that if A is (Ax,Ay) and B is (Bx,By) 
normalizedA · normalizedB = cos(angle) 
and 
A · B = Ax * Bx + Ay * By 
 
Well, one of our vectors is the reference x-axis, the 
other vecD is represented by (x1,x0, y1,y0)  
therefore the dot product is: 
 
(1,0) · ( x1-x0, y1-y0 ) 
1 * x1-x0 + 0 * y1-y0 
Which is x1-x0. If we normalize this we end up with   
cos(angleT) = x1-x0 / (length of vecD)  
angleT = acos((x1-x0)/ sqrt( (x1-x0) 2  + (y1-y0)2  ) 
angleS = 180 - angleT 

 
 
 

 

(x1,y1) 

(x0,y0) 
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So we are almost done: 
  

D 

r 

angleE 

angleG 

angleT (whole angle) 

angleS (whole angle) 

R 

d 

 
angleT = acos((x1-x0)/ sqrt( (x1-x0) 2  + (y1-y0)2 )   
angleS = 180 – angleT 
 

angleE = acos  (d/R) 
angleG = acos  ((D-d)/r) 
 
d = ( R2  - r2  + D2 ) / 2D 
 
We already know r and R 
D = sqrt( (x1-x0) 2  + (y1-y0)2 )  
 
So we have all the information we need to  
Give us the rotations which are  
angleT – angleE   for our purple object 
angleG – angleS  for our green object ie. –(angleS-angleG) 
 
If you want to see a real application of this, check out the 
sample file. 
 
 
 
 

(x1,y1) 

(x0,y0) 
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In the sample file, hscript looks like this: 

Using multi-line expressions, we have for the rotate on z variable of the purple object  

 
{ 

#  Expression calculating the angle of rotation, from the diagrams this is angleT - angleE 

#  D is the distance between the two centers of the circles 

#  D = ( R squared - r squared + D squared)/ 2D where D is the distance between the points  

#  for the moment lets assume the x1, y1 is at the origin 

# 

R = .4; 

r = .3; 

x1 = 0; 

y1 = 0; 

x0 = point("../xformRotatingWheel",40,"P",0); 

y0 = point("../xformRotatingWheel",40,"P",1); 

D = sqrt(pow(x1-x0,2) + pow(y1-y0,2)); 

d = (R*R - r*r + D*D)/(2.0*D); 

angleE = acos(d/R); 

 

# next compute angleT 

angleT = acos( ( x1 - x0 )/D); 

angleRot = angleT - angleE; 

return angleRot; 

} 
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In the sample file, hscript looks like this: 

Using multi-line expressions, we have for the rotate on z variable of the green object  

 
{ 

#  Expression calculating the angle of rotation, from the diagrams this is angleS - angleG 

#  D is the distance between the two centers of the circles 

#  D = ( R squared - r squared + D squared)/ 2D where D is the distance between the points  

#  for the moment lets assume the x1, y1 is at the origin, but the equations are still valid if you adjust this 

# 

R = .4; 

r = .3; 

x1 = 0; 

y1 = 0; 

x0 = point("../xformRotatingWheel",40,"P",0); 

y0 = point("../xformRotatingWheel",40,"P",1); 

D = sqrt(pow(x1-x0,2) + pow(y1-y0,2)); 

d = (R*R - r*r + D*D)/(2.0*D); 

angleG = acos((D-d)/r); 

 

# next compute angleT 

angleT = acos( ( x1 - x0 )/D); 

angleS = 180 - angleT; 

 

angleRot = angleS - angleG; 

return -angleRot; 

} 
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in the sample file, 
dotPythagoreanInAction.hipnc 

- see the red nodes for the equations 

- the yellow node is where the rotation of the 
point (such as a gear that will drive the 
animation) is located 

- note that the x-axis is the reference axis 
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in the sample file, 
dotPythagoreanInAction.hipnc 
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