

Dot product and pythagorean

Theorem

by Deborah R. Fowler

Suppose you have three points. Problem – we know the rotation point
and the moving point, but we need to know the constraint point

Rotation point of object

Moving point controling the object rotation

D changes, but we can compute it … we would like to know the angle
of rotation of the objects of r and R length

Point constraint since the
r and R are constant (rigid)

D

r

R

11/17/2013 2 Deborah R Fowler

What we really want to find is how much the green(leg) and the
(purple) rod rotate around their pivot points

Rotation point of object

Moving point controling the object rotation

D changes, but we can compute it … we would like to know the angle
of rotation of the objects of r and R length

Point constraint since the
r and R are constant (rigid)

D

r

R

11/17/2013 3 Deborah R Fowler

By definition, dot product of two vectors = cos (angle) * product of the
length of the two vectors. We will use this property to calculate angleS

and angleT, but before we do this, what else do we know?

reference x-axis

reference x-axis

angleT

angleS

11/17/2013 4 Deborah R Fowler

If we can find angleT and angleS that’s a start, but what we really
want is angleT-angleE and angleS-angleG

reference x-axis

reference x-axis

angleE

angleG

angleT (whole angle)

angleS (whole angle)

We can find angleE and angleG given the Pythagorean theorem
That is, given a right-sided triangle, the sum of the two sides
each squared is equal to the hypotenuse squared (a2+b2=c2)

11/17/2013 5 Deborah R Fowler

From Pythagorean’s theorem we know for right triangles that the two
sides, each squared, equal to the hypotenuse.

 red2 + d2 = R2 and red2 + (D-d)2 =r2

D

r

angleE

angleG

angleT (whole angle)

angleS (whole angle)

R

d

Equating the two:
red2 = R2 - d2 and red2 = r2 - (D-d)2

R2 - d2 = r2 - (D-d)2

Rewritten:

R2 - d2 - r2 + (D-d)2 = 0
R2 - d2 - r2 + D2 – 2Dd + d2 = 0

Solving for d:
R2 - d2 - r2 + D2 – 2Dd + d2 = 0
R2 - r2 + D2 = 2Dd
d = (R2 - r2 + D2) / 2D

So what does this give us?

11/17/2013 6 Deborah R Fowler

We can calculate length D at any given moment since we know the
point information. We also know r and R’s length – they are given.

By the definiton of cosine, we can find angleE and angleG.

D

r

angleE

angleG

angleT (whole angle)

angleS (whole angle)

R

d

So what do we have so far?
d = (R2 - r2 + D2) / 2D

Recall the definition of cosine
cos = adjacent/hypothenus

cos(angleE) = d / R
cos(angleG) = (D-d)/r

Thus taking the inverse cosine
angleE = cos-1 (d/R)
angleG = cos-1 ((D-d)/r)

cos-1 is also called inverse cosine or the
arc cosine and is available as acos in
many packages

11/17/2013 7 Deborah R Fowler

So we have a way to compute angleE and angleG. We said we could
compute angleS and angle T from the dot product. Let’s do that now:

D

r

angleE

angleG

angleT (whole angle)

angleS (whole angle)

R

d

The dot product is defined to be:

A · B = |A| * |B| * cos(angle)
If the vectors are normalized, then it is simply
normalizedA · normalizedB = cos(angle)
(ie. |A| and |B| are one)

Given A is (Ax,Ay) and B is (Bx,By)
A · B = Ax * Bx + Ay * By

So how do we get the vector D?

A great explanation on dot product can
be found at
http://www.mathsisfun.com/algebra/ve
ctors-dot-product.html

11/17/2013 8 Deborah R Fowler

Vectors – given two points in space, the vector
in the diagram is defined by (x1-x0, y1-y0)

(x1, y1)

(x0,y0)

v

11/17/2013 9 Deborah R Fowler

Vectors: Recall how to compute the length of a vector and how
to normalize a vector

(x1, y1)

(x0,y0)

v

Given a vector v
The length of a vector is
sqrt((x1-x0)2 + (y1-y0)2)

This is the length from
pythagorean’s theorem

To normalize a vector, we divide it
by the length of the vector

11/17/2013 10 Deborah R Fowler

What about our case?

D

r

angleE

angleG

angleT (whole angle)

angleS (whole angle)

R

d

Recall that if A is (Ax,Ay) and B is (Bx,By)
normalizedA · normalizedB = cos(angle)
and
A · B = Ax * Bx + Ay * By

Well, one of our vectors is the reference x-axis, the
other vecD is represented by (x1,x0, y1,y0)
therefore the dot product is:

(1,0) · (x1-x0, y1-y0)
1 * x1-x0 + 0 * y1-y0
Which is x1-x0. If we normalize this we end up with
cos(angleT) = x1-x0 / (length of vecD)
angleT = acos((x1-x0)/ sqrt((x1-x0) 2 + (y1-y0)2)
angleS = 180 - angleT

(x1,y1)

(x0,y0)

11/17/2013 11 Deborah R Fowler

So we are almost done:

D

r

angleE

angleG

angleT (whole angle)

angleS (whole angle)

R

d

angleT = acos((x1-x0)/ sqrt((x1-x0) 2 + (y1-y0)2)
angleS = 180 – angleT

angleE = acos (d/R)
angleG = acos ((D-d)/r)

d = (R2 - r2 + D2) / 2D

We already know r and R
D = sqrt((x1-x0) 2 + (y1-y0)2)

So we have all the information we need to
Give us the rotations which are
angleT – angleE for our purple object
angleG – angleS for our green object ie. –(angleS-angleG)

If you want to see a real application of this, check out the
sample file.

(x1,y1)

(x0,y0)

11/17/2013 12 Deborah R Fowler

In the sample file, hscript looks like this:

Using multi-line expressions, we have for the rotate on z variable of the purple object

{

Expression calculating the angle of rotation, from the diagrams this is angleT - angleE

D is the distance between the two centers of the circles

D = (R squared - r squared + D squared)/ 2D where D is the distance between the points

for the moment lets assume the x1, y1 is at the origin

R = .4;

r = .3;

x1 = 0;

y1 = 0;

x0 = point("../xformRotatingWheel",40,"P",0);

y0 = point("../xformRotatingWheel",40,"P",1);

D = sqrt(pow(x1-x0,2) + pow(y1-y0,2));

d = (R*R - r*r + D*D)/(2.0*D);

angleE = acos(d/R);

next compute angleT

angleT = acos((x1 - x0)/D);

angleRot = angleT - angleE;

return angleRot;

}

11/17/2013 13 Deborah R Fowler

In the sample file, hscript looks like this:

Using multi-line expressions, we have for the rotate on z variable of the green object

{

Expression calculating the angle of rotation, from the diagrams this is angleS - angleG

D is the distance between the two centers of the circles

D = (R squared - r squared + D squared)/ 2D where D is the distance between the points

for the moment lets assume the x1, y1 is at the origin, but the equations are still valid if you adjust this

R = .4;

r = .3;

x1 = 0;

y1 = 0;

x0 = point("../xformRotatingWheel",40,"P",0);

y0 = point("../xformRotatingWheel",40,"P",1);

D = sqrt(pow(x1-x0,2) + pow(y1-y0,2));

d = (R*R - r*r + D*D)/(2.0*D);

angleG = acos((D-d)/r);

next compute angleT

angleT = acos((x1 - x0)/D);

angleS = 180 - angleT;

angleRot = angleS - angleG;

return -angleRot;

}

11/17/2013 14 Deborah R Fowler

in the sample file,
dotPythagoreanInAction.hipnc

- see the red nodes for the equations

- the yellow node is where the rotation of the
point (such as a gear that will drive the
animation) is located

- note that the x-axis is the reference axis

11/17/2013 15 Deborah R Fowler

in the sample file,
dotPythagoreanInAction.hipnc

11/17/2013 16 Deborah R Fowler

r

R

