ITGM 315 — Coding Standards

All code written for this class whether in class or for an assignment must conform to this
document. This is a living document and may be updated as needed throughout the

course.

1. Variable and Function Names

a.

b.

2. Magic

All multiple word names must have each successive word start with a
capital letter — example: “localVariable”

Names should avoid abbreviations — example: use “transformMatrix”
rather than “tm”

Variable names should begin with a lower case character — example:
“localVariable”

Function names should begin with a lower case letter — example:
“myFunction”

Class names should start with an upper case letter — example: “MyClass”
Class member variables should begin with a lower case ‘m’ — example:
“mHitPoints”

Constants and Enums should be in all upper case with underscores
separating words — example: “PI” or “MAX_SCORE”

Global functions and variables should be avoided. However, if used they
should be prefaced with a lower case ‘g’ — example: “gCurrentScore”
Pointers should be prefaced with a lower case ‘p’ and references should be
prefaced with a lower case ‘r’ — examples: “pUnit”, “ppUnit”, “rUnit”

Numbers
Do not use numbers directly in your code. Instead use a const variable.

For instance:

if (xp > 100)
{

}

//1is much less understandable than:
const int XP LEVELZ = 100;

if (xp > XP_LEVEL 2)

{

}

Strings can be considered Magic Numbers as well:
if (name == "Burt")

{

}

//1is much less understandable than:
const string MONSTER NAME = "Burt";
if (name == MONSTER NAME)

{

}

3. Code formatting
a. Matching braces should line up — example:

if (localVariable ==3)

¢ /I code inside should be indented
}
else
/I code inside should be indented
/I this makes it easy to visually match braces
}
DO NOT USE:
if (localVariable ==3){
I/ code
}
else {
}

b. Tabs should be 4 spaces.
c. Use White space to make code more readable - example:

while (maxHitPoints > 0)
{
if (x == 1)
{
RotateObject () ;
InvertObject () ;

maxHitspoints++;

}

else

{

maxHitPoints--;

}

RedrawScreen () ;

}

DO NOT USE:
while (maxHitPoints>0)
{
if (x==1)
{
RotateObject () ;
InvertObject () ;
maxHitspoints++;

else

{

maxHitPoints--;

}

RedrawScreen () ;

}

Also when using a do-while loop please be sure to put space after the curly brace:

do

{
// a bunch of code here
} while (some condition);

i\

d. It is legal in C++ to not use curly braces at all if there is only a single
command following an if, else, while or for. Use them anyway. That way,
if you later want to add a command, you do not have to remember to add
curly braces too.

4. Commenting
Proper use of // or /* symbols for comments are fine.

a.

/*

Each function (including main()) should contain a comment block
explaining the purpose of the function, describing the input parameters
and any output. Using Example:

/*
GetNumTemples - function to return the number of
temples owned by a particular god
Parameters:
inGodNum - index of the god
Return:
int - the number of temples owned by the passed
in god
*/

int GetNumTemples(int32 inGodNum)..
If a function uses a particularly confusing algorithm then it should be
described in the function header comment block

CalcDerivedData - function to calculate the data derived
from the passed in Unit

Parameters:

unit - a reference to the unit to derive data for
Return:

Data - a new Data class containing all derived data

This function uses the following algorithm to calc data:
1) Get the birthdate of the unit

*/

2) Multiply birthdate by the current number of hit points
3) Divide by PI to adjust for rounding errors

Data CalcDerivedData(Unité& unit)...

Comment lines in the function where something might be less than

obvious to the code reader.
// temp will be used to assist in switching the
// values of x and y
int temp = x;
X = y;
y = temp;

Do not use comments to restate the code.
DO NOT do this:

int currentHitPoints = 0; //set currentHitPoints to 0
currentHitPoints++; //increment the currentHitPoints
currentHitPoints /= 2;//divide the currentHitPoints by 2

For code blocks that are long enough that they do not fit on a single screen
and force the reader to scroll, add an end-of-line comment following the
final curly brace, denoting what code block it is closing:

for(inti = 0; i<=n;i++)

{

/I assume there is a lot of code here

}// end for i

