
ITGM 315 – Coding Standards

All code written for this class whether in class or for an assignment must conform to this

document. This is a living document and may be updated as needed throughout the

course.

1. Variable and Function Names

a. All multiple word names must have each successive word start with a

capital letter – example: “localVariable”

b. Names should avoid abbreviations – example: use “transformMatrix”

rather than “tm”

c. Variable names should begin with a lower case character – example:

“localVariable”

d. Function names should begin with a lower case letter – example:

“myFunction”

e. Class names should start with an upper case letter – example: “MyClass”

f. Class member variables should begin with a lower case „m‟ – example:

“mHitPoints”

g. Constants and Enums should be in all upper case with underscores

separating words – example: “PI” or “MAX_SCORE”

h. Global functions and variables should be avoided. However, if used they

should be prefaced with a lower case „g‟ – example: “gCurrentScore”

i. Pointers should be prefaced with a lower case „p‟ and references should be

prefaced with a lower case „r‟ – examples: “pUnit”, “ppUnit”, “rUnit”

2. Magic Numbers

a. Do not use numbers directly in your code. Instead use a const variable.

For instance:
if (xp > 100)

{

}

//is much less understandable than:

const int XP_LEVEL2 = 100;

if (xp > XP_LEVEL_2)

{

}

b. Strings can be considered Magic Numbers as well:
if (name == "Burt")

{

}

//is much less understandable than:

const string MONSTER_NAME = "Burt";

if (name == MONSTER_NAME)

{

}

3. Code formatting

a. Matching braces should line up – example:

if (localVariable == 3)

{

 // code inside should be indented

}

else

{

 // code inside should be indented

 // this makes it easy to visually match braces

}

DO NOT USE:

if (localVariable == 3){

// code

}

else {

}

b. Tabs should be 4 spaces.

c. Use White space to make code more readable - example:

while (maxHitPoints > 0)

{

 if (x == 1)

 {

 RotateObject();

 InvertObject();

 maxHitspoints++;

 }

 else

 {

 maxHitPoints--;

 }

 RedrawScreen();

}

DO NOT USE:
while(maxHitPoints>0)

{

 if(x==1)

 {

 RotateObject();

 InvertObject();

 maxHitspoints++;

 }

 else

 {

 maxHitPoints--;

 }

 RedrawScreen();

}

Also when using a do-while loop please be sure to put space after the curly brace:

do

{

 // a bunch of code here

} while (some condition);

d. It is legal in C++ to not use curly braces at all if there is only a single

command following an if, else, while or for. Use them anyway. That way,

if you later want to add a command, you do not have to remember to add

curly braces too.

4. Commenting

Proper use of // or /* symbols for comments are fine.

a. Each function (including main()) should contain a comment block
explaining the purpose of the function, describing the input parameters

and any output. Using Example:
/*

 GetNumTemples - function to return the number of

 temples owned by a particular god

 Parameters:

 inGodNum - index of the god

 Return:

 int - the number of temples owned by the passed

in god

 */

int GetNumTemples(int32 inGodNum)…

b. If a function uses a particularly confusing algorithm then it should be

described in the function header comment block

/*

 CalcDerivedData - function to calculate the data derived

 from the passed in Unit

 Parameters:

 unit - a reference to the unit to derive data for

 Return:

 Data - a new Data class containing all derived data

 This function uses the following algorithm to calc data:

 1) Get the birthdate of the unit

 2) Multiply birthdate by the current number of hit points

 3) Divide by PI to adjust for rounding errors

*/

Data CalcDerivedData(Unit& unit)...

c. Comment lines in the function where something might be less than

obvious to the code reader.
// temp will be used to assist in switching the

// values of x and y

 int temp = x;

 x = y;

 y = temp;

d. Do not use comments to restate the code.

DO NOT do this:
 int currentHitPoints = 0; //set currentHitPoints to 0

 currentHitPoints++; //increment the currentHitPoints

currentHitPoints /= 2;//divide the currentHitPoints by 2

e. For code blocks that are long enough that they do not fit on a single screen

and force the reader to scroll, add an end-of-line comment following the

final curly brace, denoting what code block it is closing:

for (int i = 0; i <= n ; i++)

{

 // assume there is a lot of code here

 } // end for i

