Wooden Toy | Breakdown

Complex Scene

Name : Jonathan Sugijono
Date : 16 ${ }^{\text {th }}$ November 2020
Houdini Version: 18.0.499

Important Statistics:

Image Resolution : 1280×720
Render Time : $6 \mathrm{mins} /$ frame
Number of lights in scene: 2

Project Description:

Reference image:
Final Result:

Sampling:

Noise Value : 0.01
Pixel Samples :4-4
Min/ Max Rays: 5-13
Diffuse Quality: 2

https://www.youtube.com/watch?v=uz8TV7gkeT0

In this project, I created a wooden automata toy using procedural animation. I really like it because it has a very simplistic design. One handle controls the whole movement and rotation of this automata. I want to keep the minimalist element in this project, so I decided to render it without any additional geometry and keep it simple.

Technical Guide:

Process:
My first step was modeling the handle and the middle parts that were being controlled by the handle. I use box node and tube node for the basic geometry.

Then, I rotate them based using simple expression which is $\$ \mathrm{~F}$ * 10. For the structure, I use box to create the outer frame and the middle sections. I also use tube for the top part that where the pillars were placed.

After that, I created an expression that rotates the plank based on the rotation of the middle parts. I used wrangle node to create this expression. The red and the blue sphere are only for reference for the points.

For the vertical movement, I use intersection analysis node to figure out where the intersection between the plank and the pole is. First, I deleted all the faces from the plank except for the one that first intersect with the pole and divide it in the middle vertically. Then, I used the intersection analysis to find the point of the intersection.

I used the point to set the placement in the y-axis for the pole. So, it would move at the same time with the plank's movement. After this process, I continue to make the two-point constraint for the mannequin on top of the wooden toy.

Below is the screenshot node for the mannequin:

I use the movement of the pole as the driving force and use a VEX expression to setup the two-point constraint.

```
vEXpression
float R = ch("../PurpleTube_R/height");
float r = ch("../GreenTube_r/height");
float x1 = ch("../retrieveCalculatedValue/tx");
float y1 = ch("../retrieveCalculatedValue/ty");
vector Pt0 = point(@OpInput1,"P",40);
float x0 = Pt0.x;
float y0 = Pt0.y;
float D = sqrt(pow(x1-x0,2) + pow(y1-y0,2));
float d = (R*R - r*r + D*D)/(2,0*D);
// compute for the purple leg
// Remember that hscript uses degrees, but vex uses radians
float angleE = degrees(acos(d/R));
float angleT = degrees(acos( (x1-x0) / D ));
f@angleRotPurple = angleT - angleE;
// compute for the green leg
float angleg = degrees(acos((D-d)/r));
float angleS = 180 - angleT;
f@angleRotGreen = -(angleS - angleG);
```

http://www.deborahfowler.com/MathForVSFX/DotProduct.html
Finally, I combined all the geometries using object merge and copied it 5 times and time shift it 5 frames per piece.

Beyond the requirements:

I did some camera tracking which is not required for this project. I used great image sequences that was taken by Kiersten Yahn.

Here is the reference frame and the screenshot of the tracked images.

I already tried to integrate the automata into the image sequence and rendered it out, but I figure that it looks odd because it does not have any context. It looks like someone just put it there for no reason.

So, I decided to use a wooden table and use backyard environment which fits well with the wooden automata.

Problem and Solutions:

My main problem is to get the plank rotation and the two-point constraint working properly, which is a big issue to continue doing this project. In the future, I have to carefully write the expression and check multiple times whether I mistype something in the code.

Reference link:
https://www.youtube.com/watch?v=uz8TV7gkeT0 - Automata Sampling, uploaded by Cecilia Schiller
http://www.deborahfowler.com/MathForVSFX/DotProduct.html - Two-point constraint,
Deborah Fowler

