
VSFX 375 – Coding Standards

(adapted from ITGM 315 – Dean Lawson
modified for VSFX 495 now 375 – Deborah R. Fowler)

All code written for this class whether in class or for an assignment must conform to this
document. This is a living document and may be updated as needed throughout the
course.

Variable and Function Names

• All multiple word names must have each successive word start with a
capital letter – example: “localVariable” (camelCase)

• Names should avoid abbreviations – example: use “transformMatrix”
rather than “tm”

• Variable names should begin with a lower case character – example:
“localVariable”

• Function names should begin with a lower case letter – example:
“myFunction”

• Class names should start with an upper case letter – example: “MyClass”
• Class member variables should begin with a lower case ‘m’ – example:

“mHitPoints”
• Constants and Enums should be in all upper case with underscores

separating words – example: “PI” or “MAX_SCORE”
• Global functions and variables should be avoided. However, if used they

should be prefaced with a lower case ‘g’ – example: “gCurrentScore”
• Pointers should be prefaced with a lower case ‘p’ and references should

be prefaced with a lower case ‘r’ – examples: “pUnit”, “ppUnit”, “rUnit”

Magic Numbers

• Do not use numbers directly in your code. Instead use a const
variable. For instance:
if (xp > 100)
{
}

//is much less understandable than:

const int XP_LEVEL2 = 100;
if (xp > XP_LEVEL_2)
{
}

• Strings can be considered Magic Numbers as well:
if (name == "Burt")
{
}

//is much less understandable than:
const string MONSTER_NAME = "Burt";
if (name == MONSTER_NAME)
{
}

Code formatting

• Matching braces should line up – example:

if (localVariable == 3)
{
 // code inside should be indented
}
else
{
 // code inside should be indented
 // this makes it easy to visually match braces
}

DO NOT USE:
if (localVariable == 3){
// code
}
else {
}

• Tabs should be 4 spaces.

• Use White space to make code more readable - example:

while (maxHitPoints > 0)
{
 if (x == 1)
 {
 RotateObject();
 InvertObject();

 maxHitspoints++;
 }
 else
 {
 maxHitPoints--;
 }

 RedrawScreen();
}

DO NOT USE:
while(maxHitPoints>0)
{
 if(x==1)
 {
 RotateObject();
 InvertObject();
 maxHitspoints++;
 }
 else
 {
 maxHitPoints--;
 }
 RedrawScreen();
}

Also when using a do-while loop please be sure to put space after the
curly brace:

do
{
 // a bunch of code here
} while (some condition);

•
d. It is legal in C++ to not use curly braces at all if there is only a single
command following an if, else, while or for. Use them anyway. That way,
if you later want to add a command, you do not have to remember to add
curly braces too.

Commenting
Proper use of // or /* symbols for comments are fine. The double slash are more
modern and most IDEs use that convention.

• Top Block comment should contain:

// Description
//
// Author:
// Date:
//
// input: what do I need to run this
// output: what will I get
//
// more info if required (an algorithm if it is particularly complex

• Each function should contain a comment block explaining the
purpose of the function, describing the input parameters and any output.
For Example:
//
// GetNumTemples - function to return the number of
// temples owned by a particular god
//
// Parameters:
// inGodNum - index of the god
//
// Return:
// int - the number of temples owned by the passed in god

 //
int GetNumTemples(int32 inGodNum)…

• If a function uses a particularly confusing algorithm then it should be
described in the function header comment block

//
// CalcDerivedData - function to calculate the data derived
// from the passed in Unit
//
// Parameters:
// unit - a reference to the unit to derive data for
//
// Return:
// Data - a new Data class containing all derived data
//
// This function uses the following algorithm to calc data:
// 1) Get the birthdate of the unit
// 2) Multiply birthdate by the current number of hit points
// 3) Divide by PI to adjust for rounding errors
//
Data CalcDerivedData(Unit& unit)...

• Comment lines in the function where something might be less than
obvious to the code reader.

// temp will be used to assist in switching the
// values of x and y

 int temp = x;
 x = y;
 y = temp;

• Do not use comments to restate the code.
DO NOT do this:

 int currentHitPoints = 0; //set currentHitPoints to 0
 currentHitPoints++; //increment the currentHitPoints

currentHitPoints /= 2;//divide the currentHitPoints by 2

• For code blocks that are long enough that they do not fit on a single

screen and force the reader to scroll, add an end-of-line comment
following the final curly brace, denoting what code block it is closing:

for (int i = 0; i <= n ; i++)
{

 // assume there is a lot of code here

 } // end for i

